If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2-18n-35=0
a = 5; b = -18; c = -35;
Δ = b2-4ac
Δ = -182-4·5·(-35)
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-32}{2*5}=\frac{-14}{10} =-1+2/5 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+32}{2*5}=\frac{50}{10} =5 $
| 1.5x=2.6 | | 49n^2-30=7n | | 5(x-3=15+5x | | 5x+14=-19x-8 | | x3+4x2−11x−30=0. | | 2-18x=70 | | 5m^2-7m=-2 | | y+30+y+-30=180 | | (12x+16)+(14x-2)=180 | | (5^2x)-12=113 | | 1/3(p-3)=144 | | x+10.5+2.8+9=26 | | 15=2/3b+b | | 5x^2=2880 | | 10-6n=2+2n | | (44x-2)+(15x+5)=180 | | F(t)=-3t+4=19 | | 4/3m=9 | | n^2+15n-9=0 | | 250x+225=100+125x | | 25+x=30+2x-14 | | 4q+3=q+6 | | 3x(1+0.5)-x=20 | | -4/3m=9 | | x—=182 | | 2x/6=2/4-3x+4/2 | | (11x+1)+(10x+10)=180 | | 1/3-2/5x=1/5x | | 1/3-2/5x=1/5 | | G^+11g-468=0 | | Y=3x^+x-5 | | 3(12-x)=1+4 |